Marginal mandibular branch as a surgical risk factor: anatomy and biomechanics

Ex-vivo, anatomical study

Róbert KÉSMÁRSZKY 1, Péter NAGY 2, Tamás MICSIK 3, Gergely RÁCZ 3, Liza PELYHE 4, Bettina POGÁCSÁS 4, Réka POTSUBAY 5, Eszter BOGNÁR 2,6

1 Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering, H-1111 Budapest, Hungary
2 IMEDIM Ltd.
3 Semmelweis University, 1st Department of Pathology and Experimental Cancer Research, H-1085 Budapest, Hungary
4 Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Materials Science and Engineering, H-1111 Budapest, Hungary
5 Semmelweis University, Faculty of Medicine, H-1085 Budapest, Hungary
6 MTA–BME Research Group for Composite Science and Technology, H-1111 Budapest, Hungary

World Congress of Facial Plastic Surgery
Rio de Janeiro 2016
The study was undertaken following approval from the ethical committee (Semmelweis University, Regional and Institutional Committee of Science and Research Ethics; TUKEB No. 127/2014) and in accordance with the declaration of Helsinki, using the National Research, Development and Innovation Office – NKFIH, OTKA K-116189 grant.
The aim of the presentation:

I. To clinically and culturally illustrate the importance of the mandibular branch of the facial nerve

II. To present the usual anatomy

III. To demonstrate our anatomical findings in a Hungarian population related to biomechanical forces
General anatomy-portsions

- BRAIN
- INTRACRANIAL 23-24 mm
- MEATAL 8-10 mm
- LABYRINTHIC 3-5 mm
- TYMPANIC 8-11 mm
- MASTOID 10-14 mm
- EXTRATEMPORAL Δ
Basilary artery

Pons
Pleomorph adenoma

Conley

MMB
Facial artery

MMB

Submandibular gland

Lingual artery

Carotids

Zygoma

Mandibula

XII.
Davis et al., /Miehlke, Katz/

I. No anastomosis between TF & CF divisions

II. TF anastomosis only

III. Single anastomosis between TF & CF divisions

IV. Combination of type II. & III.

V. Double anastomosis between TF & CF divisions

VI. Complex, multiple anastomosis

• Mean number of the branches at the anterior margin of the parotid gland: 7,7 +/- 1,05

• Mean number of the branches distally: 13,8 +/- 1,81

• TEMPORAL: 2,8 +/- 1,81
• ZYGOMATIC: 4,4 +/-1,34
• BUCCAL: 3,2 +/- 0,78
• MARGINAL: 2,3 +/- 0,48
MMB Retromandibular vein

Buccal branch

Anastomosis

MMB

Retromandibular vein
Lymph node

mandibular gland

XII.
MECHANISM of TRAUMA

- MICROTRAUMA
- CRUSH
- TRACTION
- TRANSSECTION
- ISCHAEMIA
- EDEMA
- TERMAL
- ELECTRICAL
- CICATRISATION
SUNDERLAND

• I. NEUROPRAXIA

• II. AXONOTMESIS /axons, Wallerian degeneration/

• III. NEUROTOMESIS /endoneural tubules/

• IV. PERINEURAL TEAR

• V. TOTAL TEAR

/I.-III. by compression, IV.-V. no total recovery without surgery/

The House-Brackmann grading system

I. Normal facial function in all areas

II. Slight weakness on close inspection

III. Obvious, not disfiguring difference, no functional deficit

IV. Obvious weakness +/- disfiguring asymmetry

V. Only barely perceptible motion

VI. No motion

IATROGENY 5.6-7%

- Oral & maxillofacial surgery 40%
- Parotidectomy 25%
- Otosurgery 17%
- Cosmetic surgery 11%
- Other 7%

RESULTS

• 31 corpses, 55 hemifaces

• 13 Male (11 included) 18 Female (all included)

• L:9 R:10 (altogether 19 HF) L:18 R:18 (altogether 36 HF)

• 58-94y, m: 76,69y 60-90y, m: 73,73y

• Non dissected: haemorrhage, autolysis, time not allowed
<table>
<thead>
<tr>
<th>No.</th>
<th>% all hemifaces</th>
<th>% all MMB branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74.54</td>
<td>58,57</td>
</tr>
<tr>
<td>2</td>
<td>23.63</td>
<td>37.14</td>
</tr>
<tr>
<td>3</td>
<td>1.81</td>
<td>4.28</td>
</tr>
<tr>
<td>No.</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>M/F (19/36) (of included hemifaces)</td>
<td>L/R (38/32 no. branches) (of all br. Of the given side)</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>73.68/75</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>26.31/22.22</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0/2.77</td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>% /70</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>Premandibular</td>
<td>45</td>
<td>64,28</td>
</tr>
<tr>
<td>Mandibular rim</td>
<td>8</td>
<td>11,42</td>
</tr>
<tr>
<td>Mandibula</td>
<td>17</td>
<td>24,28</td>
</tr>
</tbody>
</table>

(of included branches)
VERTICAL ORIGIN

<table>
<thead>
<tr>
<th>Region</th>
<th>No.</th>
<th>%</th>
<th>%M/F</th>
<th>%L/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandibula</td>
<td>55</td>
<td>78,57</td>
<td>66,66/84,78</td>
<td>78,94/78,12</td>
</tr>
<tr>
<td>Inferior rim</td>
<td>1</td>
<td>1,42</td>
<td>0/2,17</td>
<td>0/3,12</td>
</tr>
<tr>
<td>Inframandibular</td>
<td>14</td>
<td>20</td>
<td>33,33/13,04</td>
<td>21,05/18,75</td>
</tr>
<tr>
<td>Branch</td>
<td>No.</td>
<td>%</td>
<td>%M/F</td>
<td>%L/R</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Mandibula</td>
<td>18</td>
<td>25.71</td>
<td>25/26.08</td>
<td>26.31/25</td>
</tr>
<tr>
<td>Inferior rim</td>
<td>6</td>
<td>8.57</td>
<td>8.33/8.69</td>
<td>7.89/9.37</td>
</tr>
<tr>
<td>Submandibular</td>
<td>46</td>
<td>65.71</td>
<td>66.66/65.21</td>
<td>65.78/65.62</td>
</tr>
</tbody>
</table>
Course μ ↑ in males
65.71%

Vertical orientation
Vo Er Ri Tg 78.57%
Il i Cn A j

Horizontal origin
64.28%
8.57% of all specimens

83.33% : 16.66% = female : male

66.66% to buccal area

16.66% to cervical area

16.66% from buccal branch
ANASTOMOSIS

14.28% of all MMB (loop included)
8.57% of all MMB (without loop)

60% female
80% left

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>%/70</th>
<th>M/F</th>
<th>L/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-M</td>
<td>2</td>
<td>2.85</td>
<td>female</td>
<td>left</td>
</tr>
<tr>
<td>M-C</td>
<td>1</td>
<td>1.42</td>
<td>male</td>
<td>left</td>
</tr>
<tr>
<td>M-B</td>
<td>4</td>
<td>5.71</td>
<td>50-50%</td>
<td>left</td>
</tr>
<tr>
<td>2x M-B</td>
<td>1</td>
<td>1.42</td>
<td>female</td>
<td>left</td>
</tr>
<tr>
<td>M loop</td>
<td>4</td>
<td>5.71</td>
<td>1/3</td>
<td>2/2</td>
</tr>
</tbody>
</table>
CONCLUSIONS

• 1 branch is present in the majority of cases, /1,27 MMB/hemiface in this study/

• Double or triple branching is more frequent on the left

• Usually originates behind the mandibula, over the level of the rim

• Inframandibular origin is more frequent in males

• Submandibular course in about 2/3 of the cases

• Collaterals & anastomosis may occur, especially in females

• The anatomy of the MMB & neighbouring structures is unstable

• Other pathologies may be associated
Thank you for the attention!
• Dissective, ex-vivo study

• 2014-

• Fresh human cadavers

• VII.

• Marginal mandibular branch pathway, branching, collaterals, anastomosing
MMB

- Lowest number of distal branches
- Length
- „Terminal branch”
- Most often dissected branch
- Ease of preparation
- Unpredictable answer to trauma
- Risk in case of head & neck, esthetic surgery
• Identity, gender, age, emotional state –processed in 200 ms /Beck/

• Universal, culturally independent emotions /Darwin/

• Happiness, anger, disgust, fear, sadness, surprise /Ekman/

• Communication

• Eating-drinking

• Palsy, rehabilitation, transplantation
- Symptom Checklist 90
- State-Trait Anxiety Inventory
- Liebowitz Anxiety Scale
- Social Interaction Anxiety Scale
- Social Phobia Scale
- Beck Depression Inventory
- Facial Disability Index
• Second branchial arch, facioacoustic primordium

• 8th week: arborization /chemotropism, contact/

• Angle of the mouth moves: 12th week

• 16th week all neuromuscular junctions

• Myelinisation and final position by the 4th year

• Largest number of communications

• Mentalis, depressor labii inferioris, depressor anguli oris, platysma, risorius –MMB

• Zygomatic /67%/ , canine /31%/ , total /2%/
Styloid process
Hyoid bone
Styloid process
<table>
<thead>
<tr>
<th>Branches</th>
<th>MHF/ FHF</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/26</td>
<td>17/24</td>
</tr>
<tr>
<td>2</td>
<td>1/5</td>
<td>9/15</td>
</tr>
<tr>
<td>3</td>
<td>1/1</td>
<td>1/3</td>
</tr>
<tr>
<td>4</td>
<td>1/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

HF: hemiface, br.: branch
• Mean number of the branches at the anterior margin of the parotid gland: 7,7 (6.72) +/- 1.05

• Mean number of the branches distally: 13.8 (12.23) +/- 1.81

• TEMPORAL: 2.8 (2.07) +/- 1.81
• ZYGOMATIC: 4.4 (4.05) +/- 1.34
• BUCCAL: 3.2 (4.53) +/- 0.78
• MARGINAL: 2.3 (1.56) +/- 0.48

Our data based on 90 hemifaces.

CONCLUSIONS

- VII. is the most often damaged cranial nerve
- Head&Neck surgery may damage the MMB
- MMB is the most often dissected branch of VII.
- Chances of morbidity are elevated, „length”!
- Morphology is unstable, vigilance needed