THE FACE AND THE MARGINAL MANDIBULAR NERVE

Róbert KÉSMÁRSZKY1, Péter NAGY2, Tamás MICSIK3, Gergely RÁCZ3, Liza PELYHE4, Bettina POGÁCSÁS4, Réka POTSUBAY5, Eszter BOGNÁR2,6

1 Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering, H-1111 Budapest, Hungary
2 IMEDIM Ltd.
3 Semmelweis University, 1st Department of Pathology and Experimental Cancer Research, H-1085 Budapest, Hungary
4 Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Materials Science and Engineering, H-1111 Budapest, Hungary
5 Semmelweis University, Faculty of Medicine, H-1085 Budapest, Hungary
6 MTA–BME Research Group for Composite Science and Technology, H-1111 Budapest, Hungary

Divan sur la Danube 2016, Budapest, Hungary, 201
The study was undertaken following approval from the ethical committee (Semmelweis University, Regional and Institutional Committee of Science and Research Ethics; TUKEB No. 127/2014) and in accordance with the declaration of Helsinki, using the National Research, Development and Innovation Office – NKFIH, OTKA K-116189 grant.
General anatomy-Portions

- BRAIN
- INTRACRANIAL: 23-24 mm
- MEATAL: 8-10 mm
- LABYRINTHIC: 3-5 mm
- TYMPANIC: 8-11 mm
- MASTOID: 10-14 mm
- EXTRATEMPORAL: Δ
Davis et al., /Miehlke, Katz/

1. No anastomosis between TF & CF divisions
2. TF anastomosis only
3. Single anastomosis between TF & CF divisions
4. Combination of type II. & III.
5. Double anastomosis between TF & CF divisions
6. Complex, multiple anastomosis

TZAFETTA, TERZIS

• Mean number of the branches at the anterior margin of the parotid gland: 7,7 +/- 1,05

• Mean number of the branches distally: 13,8 +/- 1,81

• TEMPORAL: 2,8 +/- 1,81
• ZYGOMATIC: 4,4 +/- 1,34
• BUCCAL: 3,2 +/- 0,78
• MARGINAL: 2,3 +/- 0,48

MECHANISM of TRAUMA

- MICROTRAUMA
- CRUSH
- TRACTION
- TRANSSECTION
- ISCHAEMIA
- TERMIC, ELECTRIC EFFECT
- CICATRISATION
I. NEUROPRAXIA

II. AXONOTMESIS /axons, Wallerian degeneration!/

III. NEUROTOMESIS /endoneural tubules/

IV. PERINEURAL TEAR

V. TOTAL TEAR

/I.-III. by compression, IV.-V. no total recovery without surgery/

The House-Brackmann VII. grading system

• I. Normal facial function in all areas

• II. Slight weakness on close inspection

• III. Obvious, not disfiguring difference, no functional deficit

• IV. Obvious weakness +/- disfiguring asymmetry

• V. Only barely perceptible motion

• VI. No motion

IATROGENY 5,6-7%

- Oral & maxillofacial surgery 40%
- Parotidectomy 25%
- Otosurgery 17%
- Cosmetic surgery 11%
- Other 7%

I. Fresh human corpses
Difficulties

I. Bleeding
II. Unusual anatomy
III. Other pathologies
IV. Other pathologies
RESULTS

- 31 corpses, 55 hemifaces

- 13 Male (11 included) 18 Female (all included)

- L:9 R:10 (altogether 19 HF) L:18 R:18 (altogether 36 HF)

- 58-94y, m: 76,69y 60-90y, m: 73,73y

- Non dissected: haemorrhage, autolysis, time not allowed
<table>
<thead>
<tr>
<th>No.</th>
<th>% all</th>
<th>% all MMB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hemifaces</td>
<td>branches</td>
</tr>
<tr>
<td>1</td>
<td>(55)</td>
<td>(70)</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
<td>74.54</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>23.63</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.81</td>
</tr>
</tbody>
</table>
55 hemifaces L:R=27:28 | MHF:19 (24 br.) | FHF:36 (46 br.)
70 branches

<table>
<thead>
<tr>
<th>Branches</th>
<th>Left: 38 branches</th>
<th>Right: 32 branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 branch: 17 patients</td>
<td>1 branch: 24 patients</td>
<td></td>
</tr>
<tr>
<td>5 MHF/12 FHF (5/12 br.)</td>
<td>9 MHF/15 FHF (9/15 br.)</td>
<td></td>
</tr>
<tr>
<td>2 branch: 9 patients /18br./</td>
<td>2 branch: 4 patients /8br./</td>
<td></td>
</tr>
<tr>
<td>4 MHF, 5 FHF (8/10 br.)</td>
<td>1 MHF, 3 FHF (2/6 br.)</td>
<td></td>
</tr>
<tr>
<td>3 branch: 1 patients /3br./</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1 FHF (3 br.)</td>
<td>1 FHF</td>
<td></td>
</tr>
<tr>
<td>1 FHF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HF: hemiface, br.: branch
<table>
<thead>
<tr>
<th>No.</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M/F (19/36)</td>
<td>L/R (38/32 no. branches)</td>
</tr>
<tr>
<td></td>
<td>(of included hemifaces)</td>
<td>(of all br. Of the given side)</td>
</tr>
<tr>
<td>1</td>
<td>73.68/75</td>
<td>44.73/75</td>
</tr>
<tr>
<td>2</td>
<td>26.31/22.22</td>
<td>47.36/25</td>
</tr>
<tr>
<td>3</td>
<td>0/2.77</td>
<td>7.89/0</td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>% /70</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>(of included branches)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premandibular</td>
<td>45</td>
<td>64,28</td>
</tr>
<tr>
<td>Mandibular rim</td>
<td>8</td>
<td>11,42</td>
</tr>
<tr>
<td>Mandibula</td>
<td>17</td>
<td>24,28</td>
</tr>
</tbody>
</table>
VERTICAL ORIGIN

<table>
<thead>
<tr>
<th></th>
<th>No.</th>
<th>% /70</th>
<th>%M/F</th>
<th>%L/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandibula</td>
<td>55</td>
<td>78,57</td>
<td>66,66/84,78</td>
<td>78,94/78,12</td>
</tr>
<tr>
<td>Inferior rim</td>
<td>1</td>
<td>1,42</td>
<td>0/2.17</td>
<td>0/3,12</td>
</tr>
<tr>
<td>Inframandibular</td>
<td>14</td>
<td>20</td>
<td>33,33/13,04</td>
<td>21,05/18,75</td>
</tr>
</tbody>
</table>

(of included branches)
<table>
<thead>
<tr>
<th>Branch</th>
<th>No.</th>
<th>%</th>
<th>%M/F</th>
<th>%L/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandibula</td>
<td>18</td>
<td>25.71</td>
<td>25/26.08</td>
<td>26.31/25</td>
</tr>
<tr>
<td>Inferior rim</td>
<td>6</td>
<td>8.57</td>
<td>8.33/8.69</td>
<td>7.89/9.37</td>
</tr>
<tr>
<td>Submandibular</td>
<td>46</td>
<td>65.71</td>
<td>66.66/65.21</td>
<td>65.78/65.62</td>
</tr>
</tbody>
</table>
8,57% of all specimens

83,33% : 16,66% = female : male

66,66% to buccal area

16,66% to cervical area

16,66% from buccal branch
ANASTOMOSIS

14.28% of all MMB (loop included)
8.57% of all MMB (without loop)
60% female
80% left

<table>
<thead>
<tr>
<th>No.</th>
<th>%/70</th>
<th>M/F</th>
<th>L/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-M</td>
<td>2</td>
<td>2.85</td>
<td>female</td>
</tr>
<tr>
<td>M-C</td>
<td>1</td>
<td>1.42</td>
<td>male</td>
</tr>
<tr>
<td>M-B</td>
<td>4</td>
<td>5.71</td>
<td>50-50%</td>
</tr>
<tr>
<td>2x M-B</td>
<td>1</td>
<td>1.42</td>
<td>female</td>
</tr>
<tr>
<td>M loop</td>
<td>4</td>
<td>5.71</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/2</td>
</tr>
</tbody>
</table>
• Mean number of the branches at the anterior margin of the parotid gland: 7,7 (6.72) +/- 1.05

• Mean number of the branches distally: 13.8 (12.23) +/- 1.81

• TEMPORAL: 2.8 (2.07) +/- 1.81
• ZYGOMATIC: 4.4 (4.05) +/- 1.34
• BUCCAL: 3.2 (4.53) +/- 0.78
• MARGINAL: 2.3 (1.56) +/- 0.48

Our data based on 90 hemifaces.

CONCLUSIONS I.

- VII. is the most often damaged cranial nerve
- Impact on QoL and the soul
- Head&Neck surgery may damage the MMB
- MMB is the most often dissected branch of VII.
- Chances of morbidity are elevated, „lenght”!
- Morphology is unstable, vigilance needed
CONCLUSIONS II.

• 1 branch is present in the majority of cases

• 1,27 MMB/hemiface in this study

• Double or triple branching is more frequent on the left

• Usually originates behind the mandibula

• Inframandibular origin is more frequent in males

• Submandibular course in about 2/3 of the cases

• Collaterals & anastomosis may occur, especially in females