Applied Anatomy of the Marginal Mandibular Branch

Róbert KÉSMÁRSZKY 1, Péter NAGY2, Tamás MICSIK3, Gergely RÁCZ3, Liza PELYHE4, Bettina POGÁCSÁS4, Réka POTSUBAY5, Eszter BOGNÁR2,6

1 Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering, H-1111 Budapest, Hungary
2 IMEDIM Ltd.
3 Semmelweis University, 1st Department of Pathology and Experimental Cancer Research, H-1085 Budapest, Hungary
4 Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Materials Science and Engineering, H-1111 Budapest, Hungary
5 Semmelweis University, Faculty of Medicine, H-1085 Budapest, Hungary
6 MTA–BME Research Group for Composite Science and Technology, H-1111 Budapest, Hungary

II. Triangle Symposium of the Poland-Hungary-Japan Surgical Society, Lublin, Poland, 19-21 June 2016
The study was undertaken following approval from the ethical committee (Semmelweis University, Regional and Institutional Committee of Science and Research Ethics; TUKEB No. 127/2014) and in accordance with the declaration of Helsinki, using the National Research, Development and Innovation Office – NKFIH, OTKA K-116189 grant.
The aim of the presentation:

I. To clinically and culturally illustrate the importance of the mandibular branch of the facial nerve

II. To present the usual anatomy

III. To demonstrate our anatomical findings in a Hungarian population related to biomechanical forces
Faces of the world
Palsy
Surgical specimen: Pleomorph adenoma

Conley

MMB
"Fan"

Pes anserinus

Trunk

Zygoma

Anastomosis

Great auricular nerve

Mandibular angle

MMB

Davis 1956

Tzafetta, Terzis 2010
Neighbouring structures

- Facial artery
- Submandibular gland
- Lingual artery
- Carotids
- Collateral from the buccal branch
- Zygoma
- Mandibula

XII.
Innervated main muscles:

m. depressor labii inferioris
m. depressor anguli oris
m. mentalis
Main types in our study I.: 1 branch
Main types in our study III.: 2 branches
Main types in our study II.: Collateral
Main types in our study IV.: Loop
Main types in our study V.:
Complexity with other structures:

- Buccal branch
- Anastomosis
- MMB
- Retromandibular vein
Mechanical lesions

MICROTITUA, ISCHAEMIA

THERMAL, ELECTRICAL

EDEMA, CICATRISATION

CRUSH, TRANSSECTION, TRACTION

The House-Brackmann grading system

I. Normal facial function in all areas
II. Slight weakness on close inspection
III. Obvious, not disfiguring difference, no functional deficit
IV. Obvious weakness +/- disfiguring asymmetry
V. Only barely perceptible motion
VI. No motion

IATROGENY 5.6-7%

- Oral & maxillofacial surgery 40%
- Parotidectomy 25%
- Otosurgery 17%
- Cosmetic surgery 11%
- Other 7%

RESULTS

• 31 corpses, 55 hemifaces

• 13 Male (11 included) 18 Female (all included)

• L:9 R:10 (altogether 19HF) L:18 R:18 (altogether 36HF)

• 58-94y, m: 76,69y 60-90y, m: 73,73y

• Non dissected: haemorrhage, autolysis, time not allowed
<table>
<thead>
<tr>
<th>No.</th>
<th>% all</th>
<th>% all MMB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hemifaces</td>
<td>branches</td>
</tr>
<tr>
<td>(55)</td>
<td>(70)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>74.54</td>
<td>58.57</td>
</tr>
<tr>
<td>2</td>
<td>23.63</td>
<td>37.14</td>
</tr>
<tr>
<td>3</td>
<td>1.81</td>
<td>4.28</td>
</tr>
<tr>
<td>No.</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>M/F (19/36)</td>
<td>L/R (38/32 no. branches)</td>
</tr>
<tr>
<td></td>
<td>(of included hemifaces)</td>
<td>(of all br. of the given side)</td>
</tr>
<tr>
<td>1</td>
<td>73.68/75</td>
<td>44.73/75</td>
</tr>
<tr>
<td>2</td>
<td>26.31/22.22</td>
<td>47.36/25</td>
</tr>
<tr>
<td>3</td>
<td>0/2.77</td>
<td>7.89/0</td>
</tr>
</tbody>
</table>
Course μ ↑ in males

Vertical origin 78.57%

Horizontal origin 64.28%

65.71%
6 COLLATERALS

8,57% of all specimens

83,33% : 16,66% = female : male

66,66% to buccal area

16,66% to cervical area

16,66% from buccal branch
ANASTOMOSIS

14.28% of all MMB (loop included)
8.57% of all MMB (without loop)
60% female
80% left

<table>
<thead>
<tr>
<th>No.</th>
<th>%/70</th>
<th>M/F</th>
<th>L/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-M</td>
<td>2</td>
<td>2.85</td>
<td>female</td>
</tr>
<tr>
<td>M-C</td>
<td>1</td>
<td>1.42</td>
<td>male</td>
</tr>
<tr>
<td>M-B</td>
<td>4</td>
<td>5.71</td>
<td>50-50%</td>
</tr>
<tr>
<td>2x M-B</td>
<td>1</td>
<td>1.42</td>
<td>female</td>
</tr>
<tr>
<td>M loop</td>
<td>4</td>
<td>5.71</td>
<td>1/3</td>
</tr>
</tbody>
</table>
CONCLUSIONS

• 1 branch is present in the majority of cases, /1,27 MMB/hemiface in this study/

• Double or triple branching is more frequent on the left

• Usually originates behind the mandible, over the level of the rim

• Inframandibular origin is more frequent in males

• Submandibular course in about 2/3 of the cases

• Collaterals & anastomosis may occur, especially in females

• The anatomy of the MMB & neighbouring structures is unstable

• Other pathologies may be associated